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ABSTRACT 

This study proposes simple technique for obtaining out of plane critical load of the 

compression member in cross bracing members. Nonlinear large displacement finite 

element analysis was performed using ANSYS program [10]. The results show that 

the geometrical properties of the member’s cross-sections, the ratio of the tension to 

compression loads induced in the members and the supporting conditions at their ends 

affect significantly the out of plane critical load value. The intersection connection of 

the two members is assumed to provide full continuity. An analytical simple model is 

used and modified to deal with symmetrical and unsymmetrical cross bracing 

members with different end conditions. The results obtained using this method show 

good agreement with those obtained from the finite element analysis.  

 

 

تقدذ  ذدزا درذسد در قش قدر ة دحسر رح د ا نبدا دلأعضاد ا لأربد   درتدشةحة دربتق قادر  ر دذ معضا   د   د    دت   

تم م تخذد  قش قر درا  صش دربحذودا درد  طسحدر و درتد  تتبدبث تدالأحش دلأصدند   . درب د  رل    ت   تق قا  

من درخد د  در  ذ دحر رقس رد   مربد    در تد ج  درب دتخش ر ت  د . رتبثحا  ل ك مرب   درتشةحة ر ذ معضا   د 

درتشةحة و ع ضر ق ا درشذ درت  قذ ت ت     منذ مربد   درتدشةحة درد  قد ا دربد ة  د  درابد  دلأطدش ة لأ د  ر درد   

تددم م تددشد  من در صددلر ةددحث  . عدد ا درشمدد جض ر ددذ مقددشد  دلأربدد   تددبلأش تددالأحشد مضحددشد رلدد  قحبددر نبددا دلأعضادد ا

م دتخذد  عبد را ة دحة رح د ا نبدا دلأعضاد ا و تاذ لدر لأ ن عحدر م دتخذد ر لأربد   تدم . مرب   درتشةحة   تبشا

در تد ج  درب دتخش ر  دث ذدزا درسش قدر . درتشةحة دربتب لألد  و يحدش دربتب لألدر و درتد  ر د  سمد جض  ختل در ر دذ مقشد  د 

 . تت د ق  ع تلل درب تخش ر  ث قش قر درا  صش دربحذودا
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INTRODUCTION 

Diagonal cross bracing members are commonly used in structural steel works to resist 

horizontal loads and/or to reduce effective unrestrained length of compression 

members. This would subject one member to tension load and the other one to 

compression. In design practice, the compression member is commonly assumed not 

to be effective. Only the tension member is designed. The compression member is 

taken typical to the tension member. The Egyptian code for steel construction and 

design ECP [1] prohibit the use of rods and cables in bracing systems. For members in 

buildings, designed on basis of tension, the ECP [1] and the American specification 

AISC [2] specify that the maximum slenderness ratio λ should not exceed 300.  

 

Diagonal cross bracing members are repeated many times in steel structures. 

Including the contribution of the compression diagonal would produce economical 

design. In seismic areas, it is important to predict in which plane the system will 

buckle. The end connection should be detailed to permit ductile rotation in the 

buckling plane. If buckling occurs in the perpendicular plane, the connection may 

fracture prematurely. The compression diagonal should be designed against in plane 

and out of plane buckling.  

 

Several studies in the literature show that the diagonal tension member provides 

degree of restraint to the compression member against out of plane buckling. 

Different expressions have been derived. Timoshinko and Gere [3] used differential 

equations to find the relationship between the critical load and brace stiffness for a 

column with mid height brace. They showed that there is a limit spring stiffness above 

which the spring would behave as if it were a hinged support. Winter [4] proposed 

simple model to find the value of this stiffness. Stoman [5], [6] and [7] employed 

Raleigh – Ritz method of stationary potential energy to formulate closed form 

stability criteria for evaluating the transverse stiffness provided by the tension brace. 

Picard [8] concluded that the effective length of the compression diagonal is 0.5 times 

the diagonal length for both out of plane and in plane buckling. The same conclusion 

was drawn by El Tayem et. al. [9]. Most of these studies dealt with the problem as a 

two dimensional problem. The members are assumed to have identical length, cross 

sections and material properties. Further, one diagonal is under tension while the other 

one is subjected to compression. The intersection of the two members is at half-length 
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and provides full continuity. The supporting conditions of each member are hinged at 

one end and roller at the other one.  

  

This study investigates the parameters that affect the out of plane critical load PC of 

the compression member in cross bracing members. Buckling is assumed to occur 

about one of the cross section principles’ axes. Bracing members of single angles are 

not included in this study. A three-dimensional finite element analysis was performed. 

An analytical simple model is used and modified to deal with cross bracing members 

when they are symmetrical and unsymmetrical and having different end conditions.  

 

FINITE ELEMENT ANALYSIS 

(i) Mesh 

Buckling behavior of cross bracing members is modeled using nonlinear large 

displacement elastic finite element analysis. The ANSYS program [10] was used to 

perform the analysis. Figure 1 shows two crossing members, B and C. Each member 

was modeled using 20 uniaxial beam elements with tension, compression, torsion and 

bending capabilities. The element has 6 degrees of freedom at each node: translations 

in the directions of and rotations about the node X, Y and Z-axes. Large deflection 

capabilities of the element are activated. Different supporting conditions were 

considered. The material behavior was modeled to be elastic. The modulus of 

elasticity E value is taken equal to 2100 t/cm
2
 according to the ECP [1]. Concentrated 

compression load P was applied at point C1, figure 1. In some cases, tension load T 

was applied as well at point B1. This is to simulate the behavior when compression 

force induces in one member and tension force induces in the other one. 

 

(ii) Modeling of buckling  

Two cases of initial out of straightness were considered for the mesh of the 

compression member. First, the imperfection displacement field was given a half sine 

wave along member C in the Y - Z plane. The buckling in this mode represents the 

case of a hinged – hinged column and named mode 1 of buckling. Second, a full sine 

wave was superimposed along member C. The buckling in this mode represents the 

case of a hinged – hinged column supported at its middle by a hinged support and 

named mode 2 of buckling. The maximum initial imperfection of the mesh was made 

equal to 1 / 500 of the member length L. This technique is used in the literature and 
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known as the seeding technique [11] and [12]. Incremental nonlinear solutions for the 

two cases were obtained and evaluated for buckling. This is to guarantee that the 

buckling occurred is the first buckling mode, which happens in practice. The critical 

load PC is defined to occur at a load corresponding to very large deflection at which 

the tangentt of the load – deflection relationship is smaller than a specified tolerance. 

This tolerance was set to 2 X 10 
–3

 KN/mm. The Newton-Raphson technique was 

used for equilibrium convergence with a tolerance limit of 0.01. The convergence 

criteria were based on checking forces [10]. The model was verified against standard 

cases. 

 

PARAMETRIC STUDY  

The parameters considered are the geometrical properties of the members’ cross-

sections, ratio of the tension to compression loads induced in the members and the 

supporting conditions. The connection at the intersection of the two members is at 

their half-length and assumed to provide full continuity to both of them.  The effect of 

this continuity is also examined.  

 

1- Cross Section Geometrical Properties 

Members B and C in figure 1 were given the same length and material properties.  

Different values for the moments of inertia of member C about the X and Y-axes, 

(IX)C and (IY)C, and those of member B about the Y and Z-axes, (IY)B and (IZ)B, were 

considered. Hinged supports were provided at points B2 and C2. Roller supports are 

provided at points B1 and C1 that allow transition in the directions of the X and Z axes 

respectively. Rotations about the X, Y and Z-axes were allowed at all the supports.  

 

(i) Effect of  (IZ)B   

The moments of inertia (IX)C , (IY)C and (IY)B were made constant and given the same 

value. The value of (IZ)B was varied. The critical load PC values corresponding to the 

out of plane buckling were obtained.  The results are presented in figure 2 in terms of 

the ratios (IZ)B / (IX)C and PC / PE where PE is the Eular load of member C; i.e. PE = π
2
 

E (IX)C / L
2
. The results show that the values of PC / PE are linearly proportional to 

(IZ)B / (IX)C to a certain limit after which the value of PC / PE become nearly constant. 

At (IZ)B / (IX)C = 0.1, the value of PC is equal 108% of PE . This means that member B 

provides relatively low degree of support to member C against out of plane buckling. 
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For (IZ)B / (IX)C ranging between 3.4 to 4, the values of PC / PE are found to vary 

between 3.92 and 3.95. The buckling in this range occurred in mode 2. Member B 

restrains member C as if it were a hinged support. Increasing the value of  (IZ)B 

further did not cause significant change in the critical load and buckling mode. By 

reviewing the values of the reactions at the different supporting points for the 

different cases considered, the following notes were noticed. At buckling, the 

reactions in the Z-axis direction at B1 and B2 were nearly negligible. Almost all the 

applied compression load was transmitted to C2. The reaction in the X-axis direction 

at point B2 did not exceed 0.6% of PC. However, the reactions at points B1 and B2 in 

the Y-axis direction were nearly equal and ranging between 1.5% and 9.4% of PC. 

Their values were proportional to the values of (IZ)B. This is explained as follows. 

Increasing the value of  (IZ)B would increase the flexural stiffness of member B about 

the Z axis. This would require more force in the Y- axis direction to displace member 

B and hence allow member C to buckle in Y-Z plane. 

  

(ii) Effect of  (IY)B   

The moments of inertia (IX)C ,(IY)C and (IZ)B were made constant and given the same 

value; i.e. (IY)C /(IX)C =  (IZ)B /(IX)C =1.0. The value of (IY)B was varied. The results 

obtained are presented in figure 3. The ratio of PC / PE is found to be proportional to 

(IY)B / (IX)C. Unlike (IZ)B, increasing the value of (IY)B / (IX)C from 0.02 to 3 caused 

limited increase in PC /PE that did not exceed 7.5%. It is noted that, when applying 

compression load P on member C, the joint at the intersection of members B and C 

displace down wards in the direction of the Z-axis. Part of this load is transmitted 

through this joint to member B, and hence to the supports at B1 and B2 in turn. The 

results show that the value of this part of the load is proportionally affected by the 

value of (IY)B. At buckling, its value is nearly negligible in comparison to PC.   

 

(iii) Effect of (IY)C  

The cross section of member C was modeled having the geometrical properties of 

rectangular hollow section RHS 203*102*4.8 complying with the Canadian Standard 

Specification CSA [13]. In this case the value of  (IY)C /(IX)C = 2.92. The value of 

(IZ)B was made equal to (IX)C  while the value of (IY)B was varied. The results 

obtained are found typical to those of figure 3 for (IY)C / (IX)C = 1. The change in (IY)C 

has no effect on the out of plane critical load. 
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2- Effect of Tension Load 

Members B and C of figure 1 were modeled having the same cross-section, length, 

and material properties. The moments of inertia of members B and C cross sections 

were given the same values; i.e. (IY)C / (IX)C = (IY)B / (IZ)B, and hence (IZ)B / (IX)C = 

(IY)B / (IX)C = 1. The restraining conditions are as in figure 1.  Compression and 

tension loads were applied at C1 and B1 respectively. Different values of T / P ratio 

were considered. For each case, the values of T and P were increased, but keeping 

their ratio T / P constant. The values of PC were obtained and presented in terms of the 

ratio PC / PE, figure 4. The results in general show that PC / PE is bilinear proportional 

to the ratio T / P to certain limit after which the value of PC / PE is constant. When no 

tension load is applied, the value of PC / PE = 2.01. The value of PC / PE = 4.0 when T 

/ P equals 0.628, figure 4. In this case, member B restrains member C against out of 

plane buckling as it were a hinged support. Picard et al (8] found analytically that PC / 

PE would equal 4.0 when T / P = 0.625 and increasing T /P further would not cause 

any increase in PC / PE. The finite element results however show different behavior. 

Increasing T / P ratio more than 0.628 elevated PC / PE value. This is valid up to T / P 

= 0.8 after which PC / PE value is constant. It should be noted that the inclination of 

part a b of the relation in figure 4 is different to that of b c.    

 

Effect of Supporting Conditions -3  

Members B and C in figure 1 were modeled having the same length and material 

properties. They were given cross section of RHS 203*102*4.8 complying with CSA 

[13]. Six cases of different out of plane supporting conditions; i.e. in the Y-Z plane, 

were considered. Table 1 shows the obtained values of PC / PE ratio. The results show 

that the type of supporting conditions at the members’ ends affects the critical load 

significantly. Increasing the fixity degree at the ends of member C is more effective 

than doing this to member B. When changing the supporting conditions of members B 

and C in case 1 to those in case 6, the critical load increased by nearly 4 times. In this 

case, member B provided support as if it were a hinge and each part of member C 

behaved as if it were hinged-fixed column.  

 

 

 

 



 7 

Table 1 Values of  Pc /PE at different supporting conditions 

 

Ratio**  

Pc /PE Supporting conditions* 
Properties of members B 

& C 

Cas

e 
Analytical 

model 

F.E. 

analysis 

Member B Member C 

B2 B1 C2 C1 

92.7% 1.91 2.06 H R 

H R 

the same length, material 

properties  

cross section of   

RHS 203*102*48 

(IY)B/(IZ)C= (IY)C/(IX)C=2.92 

(IZ)B/(IX)C=(IY)B/(IY)C=1 

NO tension is induced in B 

1 

94.4% 3.04 3.22 F R 2 

101.5% 4.0 3.94 F FR 3 

96.6% 4.97 5.14 H R 

F FR 

4 

95.2% 6.16 6.47 F R 5 

97.7% 7.87 8.05 F FR 6 

 

Notes 

* Symbols used for supporting conditions means: 

R = roller support that allows transition in the direction of the member length, 

H = hinged support, F = fixed support and FR = fixed support which allows transition 

in the direction of the member length. 

** Ratio = % of simple model results to the F. E. results 

 

4 - Intersection Connection 

In practice, cross bracing members are usually made co-planner. One member is 

interrupted and the other one is continuous. It is usual practice to connect the 

interrupted member to the continuous one by means of gusset plate connection. The 

finite element analysis was used to model case 1 of table 1 when member B is 

interrupted and connected to member C by hinges as shown in figure 5. The results 

show that member B in this case does not provide any degree of restraining to C 

against out of plane buckling and the value of PC / PE = 1.0. The study in reference 

[14] considered the cases of semi-rigid intersection connection for cross bracing 

members with pinned end connections.  

 

ANALYTICAL MODEL 

Cross bracing members are modeled as follows. The compression member is 

supported by a spring at the two members intersection. Winter [4] modified this 

model by introducing a fictitious hinge as shown in figure 6.  This is to find the spring 

stiffness value after which the spring would restrain the compression member against 

buckling as if it were a hinged support. The spring is assumed to be elastic. At 

buckling, the equilibrium at the hinge O is given as follows: 

 

                       PC  Δ  = ( K  Δ / 2) * ( L / 2 )                                                                (1) 
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 Where PC is the critical load and K is the transitional stiffness of the spring. At 

buckling, each part of the compression member would buckle individually and the 

critical load of the system would equal: 

 

                    PC = π
2
 E  I / ( L / 2 )

2
 = 4 PE                                                                   (2) 

 

Where PE is the Eular load of the compression member. By substituting PC of 

equation 2 into equation 1, the spring would behave as if it were a hinged support 

when: 

 

                           K = 16 PE / L                                                                                     (3) 

 

For the cross bracing members B and C in figure 1, K represents the transitional 

stiffness of member B that provide restraining to member C against out of plane 

buckling. From the finite element results, the values of Fy and δy are related by 

equation 4. The symbols Fy and δy are used for the force induced and the deflection 

occurred at members B and C intersection in the Y-axis direction. 

 

                                  δy  = Fy L
3
 / 48 E ( IZ )B                                                              (4) 

 

Equation 4 can be rearranged as follows:  

 

                                 K =  Fy / δy  = SB E ( IZ )B / L
3
                                                    (5) 

 

Where SB = 48. Equation 5 is substituted into equation 3. In figure 7, equation 3 is 

represented by the dashed line o e f in terms of the ratios PC / PE and (IZ)B / (IX)C . PE 

in this case is the Eular load for out of plane buckling of member C and taken as 

follows:  

 

                                         PE = π
2
 E ( IX )C / L

2
                                                             (6) 

 

The results show that member B would behave as if it were a hinged support at ( IZ )B 

/ ( IX )C = 3.29. This relation is modified by the line d e f for the original proposed 

model; i.e. with out the fictitious hinge. For comparison, the finite element results of 
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figure 2 are superimposed on figure 7. The two relations are coinciding up to (IZ)B / 

(IX)C = 1.85 and then deviates. The maximum difference in PC / PE values obtained 

from the two analyses equals 4% at ( IZ )B / ( IX )C = 3.29. 

 

EVALUATION OF OUT OF PLANE Critical LOAD 

(i) Symmetrical members  

Figure 8 can be used for the evaluation of out of plane critical load for cross bracing 

members as members B and C in figure 1. The relationship d e f of figure 7 is 

implemented for the cases when no tension is considered. The finite element results at 

different values of T/PC are superimposed. Member B is assumed to provide a hinged 

support at T / PC = 0.628 and the increase in T / PC is assumed to cause no increase in 

PC/PE. Figure 9 is used when members B and C have fixed supports at their ends as 

shown in the figure. Winter model [4] is not valid for this case. This relation is 

obtained as follows. When member C is supported only at its ends by fixed supports, 

its critical load PC = 4 PE. When member B is considered, it is modeled as an elastic 

spring. This spring would restrain member C against buckling as if it were a hinged 

support when: 

 

                         K = 21 PE / L                                                                                       (7) 

 

And the critical load in this case would equal: 

 

                     PC = 8.184 PE                                                                                          (8)         

 

These values are obtained using the stability functions Φ and Ψ in reference [3]. By 

equating equation 7 to 5 and using SB = 192, member B would restrain C as if it were 

a hinged support at (IZ)B / (IX)C = 1.08. 

 

(ii) Unsymmetrical members 

Figures 8 and 9 can still be used when cross bracing members are not symmetrical; 

i.e. having different lengths, supporting conditions and/or cross sections. In this case, 

a fictitious member having supporting conditions and length typical to those of 

member C is used instead of member B. The transitional stiffness provided by that 

member should equal that of member B and calculated as follows: 
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                                 SB E ( IZ )B / LB
3
 = SF E (IZ)F / LC

3
                                              (9) 

 

The symbols B, C and F are used for members B, C and the fictitious one 

respectively. The value of SF would depend on the supporting conditions of member 

C. SF equals 48 and 192 when dealing with figures 8 and 9 respectively. Similarly, the 

value of SB would equal 48, 107.3 or 192 when the supporting conditions of member 

B are hinged-roller, fixed-roller or fixed-fixed respectively. The value of (IZ)F is 

obtained in terms of ( IZ )B. The ratio of (IZ)F / (IX)C is calculated and used instead of 

(IZ)B / (IX)C to get the value of  PC/PE from figures 8 or 9. It should be noted that this 

method do not include the effect of (IY)B / (IX)C. Figures 8 and 9 are used to obtain the 

values of PC/PE for cases 1 to 6 of table 1. The results are presented in table 1 and 

show good agreement.  

 

PRACTICAL CONSIDRATIONS 

In practice, designers normally use typical cross sections for diagonal cross bracing 

members. In this case, the values of (IZ)B / (IX)C = (IY)B /(IY)C = 1. The value of (IY)B / 

(IX)C = (IY)B / (IZ)B which is the ratio of the moments of inertia of the member’s cross 

section about its principle axes. This ratio equals unity for circular and square hollow 

sections. By reviewing the Canadian specification CSA [13], it is found that (IY)B / 

(IZ)B  ranging between 1.5 and 3.1 for rectangular hollow sections. For two angles 

back to back, the value of  (IY)B / (IZ)B would depend on the thickness of the gusset 

plate and either the short or the long leg is parallel to the Y axis. The values of (IY)B / 

(IZ)B are calculated using the data provided in the CSA [13] considering the global 

coordinate system in figure 1. The values of (IY)B / (IZ)B are found ranging between 

0.125 to 0.47 for equal leg angles. For unequal leg angles, (IY)B / (IZ)B values are 

ranging between 0.46 to1.25 when the short legs are parallel to the Y axis and 0.09 to 

0.2 when the long legs are parallel to the Y axis. This in turn limits the effect of (IY)B / 

(IX)C on the value of  PC /PE.  

 

CONCLUSIONS 

Nonlinear large displacement finite element analysis was used to model the buckling 

behavior of cross bracing members using ANSYS program. One member is subjected 

to compression load and the other one to tension load in some cases, members B and 
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C in figure 1. The results show that member B provides degree of restrain to member 

C against out of plane buckling. The value of (IZ)B / (IX)C effects significantly this 

degree of restraining. At (IZ)B / (IX)C = 3.4, member B would restrain C against out of 

plane buckling as if it were a hinged support. Another effective parameter is the 

tension load induced in B. At T/PC = 0.628, the value of PC / PE = 4.0. The supporting 

conditions at the ends of members C and B are other parameters that affect the out of 

plane critical load, table1. Further, an analytical simple model is implemented and 

developed to evaluate the out of plane critical load. Figures 8 and 9 can be used for 

symmetrical and unsymmetrical cross bracing members. The results obtained are 

compared to those of the finite element. The results show good agreement. 

 

NOMENCLATURE 

 

E                modulus of elasticity 

FY              force in the direction of the Y axis 

( IN )M        moment of inertia of member M about N-N axis 

K       spring transitional stiffness 

L        member length 

P        compression load 

PC      critical load 

PE        Eular load 

Sn numerical factor of member N 

T         tension load 

Δ        deflection at mid length of member    

Δb         deflection at buckling 

δy      deflection in the direction of the Y-axis 
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